Linear dynamics of weakly viscous accretion disks : A disk analog of Tollmien - Schlichting waves

نویسنده

  • G. Shaviv
چکیده

This paper discusses new perspectives and approaches to the problem of disk dynamics where, in this study, we focus on the effects of viscous instabilities influenced by boundary effects. The Boussinesq approximation of the viscous large shearing box equations is analyzed in which the azimuthal length scale of the disturbance is much larger than the radial and vertical scales. We examine the stability of a non-axisymmetric potential vorticity mode, i.e. a PV-anomaly. in a configuration in which buoyant convection and the strato-rotational instability do not to operate. We consider a series of boundary conditions which show the PV-anomaly to be unstable both on a finite and semi-infinite radial domains. We find these conditions leading to an instability which is the disk analog of Tollmien-Schlichting waves. When the viscosity is weak, evidence of the instability is most pronounced by the emergence of a vortex sheet at the critical layer located away from the boundary where the instability is generated. For some boundary conditions a necessary criterion for the onset of instability for vertical wavelengths that are a sizable fraction of the layer’s thickness and when the viscosity is small is that the appropriate Froude number of the flow be greater than one. This instability persists if more realistic boundary conditions are applied, although the criterion on the Froude number is more complicated. The unstable waves studied here share qualitative features to the instability seen in rotating Blasius boundary layers. The implications of these results are discussed. An overall new strategy for exploring and interpreting disk instability mechanisms is also suggested.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Thermal Conduction in Accretion Disks with Outflows

In this work we solve the set of hydrodynamical equations for accretion disks in the spherical coordinates (r,θ,ϕ) to obtain the explicit structure along θ direction. We study a two-dimensional advective accretion disc in the presence of thermal conduction. We find self-similar solutions for an axisymmetric, rotating, steady, viscous-resistive disk. We show that the global structure of an advec...

متن کامل

Nonaxisymmetric Viscous Lower Branch Modes in Axisymmetric Supersonic Flows

In a previous paper, we have considered the weakly nonlinear interaction of a pair of axisymmetric lower branch Tollmien-Schlichting instabilities in cylindrical supersonic flows. Here the possibility that nonaxisymmetric modes might also exist is investigated. In fact it is found that such modes do exist and, on the basis of linear theory, it appears that these modes are the most important. Th...

متن کامل

A simple model for accretion disks in the post-Newtonian approximation

p { margin-bottom: 0.1in; direction: ltr; line-height: 120%; text-align: left; }a:link { } In this paper, the evolution of accretion disks in the post-Newtonian limit has been investigated. These disks are formed around gravitational compact objects such as black holes, neutron stars, or white dwarfs. Although most analytical researches have been conducted in this context in the framework o...

متن کامل

Effect of the temperature profile of the accretion disk on the structure of jets and outflows around protostars

Magnetic fields play an important role in creating, driving, and in the evolution of outflows and jets from protostars and accretion disks. On the other hand, the temperature profile of the accretion disks may also affect the structure of the magnetic field and outflows. In this paper, we use the self-similar method in cylindrical coordinates to investigate the effect of the temperature profile...

متن کامل

Local Dynamical Instabilities in Magnetized, Radiation Pressure Supported Accretion Disks

We present a general linear dispersion relation which describes the coupled behavior of magnetorotational, photon bubble, and convective instabilities in weakly magnetized, differentially rotating accretion disks. We presume the accretion disks to be geometrically thin and supported vertically by radiation pressure. We fully incorporate the effects of a nonzero radiative diffusion length on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008